Witcel

PEI-40K 转染试剂

#T101

产品简介

PEI-40K是一种分子量为40,000的高电荷阳离子聚合物,容易结合带负电荷的核酸分子,形成复合物,并使该复合物进入细胞中。PEI 40K是一种瞬时转染试剂,细胞毒性低,转染效率高,在HEK293和CHO等细胞中基因表达效率较高。目前已经验证线性PEI转染试剂广泛适用于多种细胞系包括HEK-293、HEK293T、CHO-K1、COS-1、COS-7、NIH/3T3、Sf9、HepG2和Hela细胞等,转染效率高达80%~90%。

本产品仅作科研用途

产品/组分信息

组分名称	T101-01	T101-02	T101-03
PEI-40K 转染试剂	1 mL	25 mL	100 mL

储存方式

2℃~-8℃ 保存, 产品有效期2年。

使用说明

贴壁细胞转染操作流程(以6孔板为例)

- 1. 接种细胞:为了提高转染效率,建议在转染前一天接种细胞,以转染时细胞密度在70%为宜。
- 2. 准备DNA-PEI复合物:对于每孔细胞,使用100 μL无血清培养基稀释2 μg目的DNA,充分混匀成DNA稀释液。立刻向100 μL的DNA稀释液中加入4 μL的PEI-40K转染试剂,轻轻混匀。在室温下孵育5~10 min,使得形成DNA-PEI阳离子核酸转染试剂复合物。
- 3. 转染细胞:在形成复合物过程中,移除细胞生长培养基,每孔中加入2 mL新鲜预热的完全培养基。直接将100 μL DNA-PEI核酸-PEI复合物加入细胞中,摇动培养板,轻轻混匀。37 ℃,5% CO2培养箱培养,24-96h 后可进行进一步的细胞实验。

悬浮细胞转染操作流程(1L体系为例)

- 1. 接种细胞:根据细胞状态,选择合适的接种密度,建议细胞接种密度为1-1.5×10⁶ cells/mL,使第二天转染时细胞密度为2-3×10⁶ cells/mL为宜。
- 2. 准备DNA-转染试剂复合物

质粒与试剂比例:建议质粒 (μg)与试剂 (μL)参考配比区间为1:0.5 - 1:3。

质粒稀释: 使用50 mL无血清培养基稀释2 mg质粒, 并轻轻混匀。

试剂稀释: 使用50 mL无血清培养基稀释4 mL 转染试剂, 并轻轻混匀。

配置复合物: 将配置好的转染试剂稀释液加入到质粒稀释液中, 轻轻涡旋混匀后, 室温静置5-10 mins, 备用。

3 转边细的

直接将配置好的DNA-转染试剂复合物加入到1L细胞悬液中,摇动培养瓶,轻轻混匀。在37℃,5% CO2培养箱中培养24-72h后进行检测分析。

转染用量(仅供参考):

培养皿	表面积(cm2)	DNA的量(μg)	转染试剂的量(μL)	稀释液体积(µL)	培养基总量
96孔板	0.3	0.1	0.3	10	100 μL
48孔板	0.7	0.2	0.6	20	200 μL
24孔板	1.9	0.5	1.5	50	500 μL
12孔板	3.8	1	3	50	1mL
6孔板	10	2	6	100	2 mL
25cm ² 培养瓶	21	4	12	200	4 mL
75cm ² 培养瓶	58	10	30	500	10 mL

【注】: 该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。